
Matthew Liu

Lab Report 6

ECE 2031 L09

27 February 2019

Figure 1. UML state chart for train state machine lab. Conditions to enter steady state are detailed above, and

steady state implementation is below (charts separated for clarity). Note that states like AstopReset2 and

AstopReset can be simplified to one state; however, both states included in practice for less ambiguity.

APPENDIX A

LAB 6 TRAIN STATE MACHINE IN VHDL

-- tcontrol.vhd Source File

-- Lab 6 Train State Machine VHDL Code Source File

-- State machine to control trains

-- Matthew Liu

-- ECE2031 L09

-- 21 February 2019

LIBRARY IEEE;

USE IEEE.STD_LOGIC_1164.all;

USE IEEE.STD_LOGIC_ARITH.all;

USE IEEE.STD_LOGIC_UNSIGNED.all;

ENTITY Tcontrol IS

 PORT(

 reset, clock, sensor1, sensor2 : IN std_logic;

 sensor3, sensor4, sensor5, sensor6 : IN std_logic;

 switch1, switch2, switch3, switch4 : OUT std_logic;

 dirA, dirB : OUT std_logic_vector(1 DOWNTO

0)

);

END Tcontrol;

ARCHITECTURE a OF Tcontrol IS

 -- We create a new TYPE called STATE_TYPE that is only allowed

 -- to have the values specified here. This

 -- 1) allows us to use helpful names for values instead of

 -- arbitrary values

 -- 2) ensures that we can never accidentally set a signal of

 -- this type to an invalid value, and

 -- 3) helps the synthesis software create efficient hardware for our

design.

 TYPE STATE_TYPE IS (

 A1B5,

 A4B6,

 A5B1,

 A6B4,

 Bstop,

 Astop,

 Bstop2,

 Astop2,

 AstopReset,

 BstopReset,

 AstopReset2,

 BstopReset2,

 BothMove,

 BothMove1,

 BothMove2

);

 -- Now we can create a signal of our new type. Note that there is

 -- nothing special about the names "state" or "state_type", but it makes

 -- sense to use these names because that is how we are using them.

 SIGNAL state : STATE_TYPE;

 -- Here we create some new internal signals which will be concatenations

 -- of some of the sensor signals. This will make CASE statements easier.

 SIGNAL sensor12,sensor24, sensor15, sensor46, sensor51,

sensor64,sensor62,sensor61 : std_logic_vector(1 DOWNTO 0);

BEGIN

 -- A process statement is required for clocked logic, such as a state

machine.

 PROCESS (clock, reset)

 BEGIN

 IF reset = '1' THEN

 -- Reset to this state

 state <= BothMove;

 ELSIF clock'EVENT AND clock = '1' THEN

 -- Case statement to determine next state.

 -- Case statements are a nice, clean way to make decisions

 -- based on different values of a signal.

 CASE state IS

 -- A1B5 State represents Train A and B approaching 1 and 5

respectively

 -- if one train reaches sensor before other enter into stop state

while other moves

 -- True for all states maintaining steady state A1B5, A4B6, etc.

 WHEN A1B5 =>

 CASE sensor15 IS

 WHEN "00" => state <= A1B5;

 WHEN "01" => state <= Bstop;

 WHEN "10" => state <= Astop;

 WHEN "11" => state <= A4B6;

 WHEN OTHERS => state <= A1B5;

 END CASE;

 -- A4B6 State represents Train A and B approaching 4 and 6

respectively

 WHEN A4B6 =>

 CASE sensor46 IS

 WHEN "00" => state <= A4B6;

 WHEN "01" => state <= Bstop;

 WHEN "10" => state <= Astop2;

 WHEN "11" => state <= A5B1;

 WHEN OTHERS => state <= A4B6;

 END CASE;

 -- A appraoch 4, B appraoch 1

 WHEN A5B1 =>

 CASE sensor51 IS

 WHEN "00" => state <= A5B1;

 WHEN "01" => state <= Bstop2;

 WHEN "10" => state <= Astop2;

 WHEN "11" => state <= A6B4;

 WHEN OTHERS => state <= A5B1;

 END CASE;

 -- A approach 6, B approach 4

 WHEN A6B4 =>

 CASE sensor64 IS

 WHEN "00" => state <= A6B4;

 WHEN "01" => state <= Bstop2;

 WHEN "10" => state <= Astop;

 WHEN "11" => state <= A1B5;

 WHEN OTHERS => state <= A6B4;

 END CASE;

 -- Astops while B moves (steady state)

 WHEN Astop =>

 IF sensor4 = '1' THEN

 state <= A1B5;

 ELSIF sensor5 = '1' THEN

 state <= A4B6;

 ELSE

 state <= Astop;

 END IF;

 -- Bstops while A moves (steady state)

 WHEN Bstop =>

 IF sensor1 = '1' THEN

 state <= A4B6;

 ELSIF sensor4 = '1' THEN

 state <= A5B1;

 ELSE

 state <= Bstop;

 END IF;

 -- A stop while B moves (steady state)

 WHEN Astop2 =>

 IF sensor6 = '1' THEN

 state <= A5B1;

 ELSIF sensor1 = '1' THEN

 state <= A6B4;

 ELSE

 state <= Astop2;

 END IF;

 -- B stops while A moves (Steady state)

 WHEN Bstop2 =>

 IF sensor5 = '1' THEN

 state <= A6B4;

 ELSIF sensor6 = '1' THEN

 state <= A1B5;

 ELSE

 state <= Bstop2;

 END IF;

 -- A stops while B moves during Beginning/Reset Phase

 WHEN AstopReset =>

 IF sensor61 = "11" THEN

 state <= BstopReset;

 ELSIF sensor46 = "11" THEN

 state <= A1B5; -- Entrance into Steady State

 ELSE

 state <= AstopReset;

 END IF;

 -- B stop A moves (reset phase)

 WHEN BstopReset =>

 IF sensor62= "11" THEN

 state <= AstopReset;

 ELSIF sensor46 = "11" THEN

 state <= A5B1; -- Entrance into Steady State

 ELSE

 state <= BstopReset;

 END IF;

 -- A stop B moves (reset phase) Additional state (2) to provide

clarity in track orientation

 WHEN AstopReset2 =>

 IF sensor61 = "11" THEN

 state <= BstopReset2;

 ELSIF sensor46 = "11" THEN

 state <= A1B5; -- Entrance into Steady State

 ELSE

 state <= AstopReset2;

 END IF;

 -- A stop B moves (reset phase)

 WHEN BstopReset2 =>

 IF sensor62= "11" THEN

 state <= AstopReset2;

 ELSIF sensor46 = "11" THEN

 state <= A5B1; -- Entrance into Steady State

 ELSE

 state <= BstopReset2;

 END IF;

 -- Both Trains are moving (reset phase)- sensor 1 hit first, new

state used for clarity

 WHEN BothMove1 =>

 IF sensor2 = '1' THEN

 state <= BstopReset2;

 ELSIF sensor6 = '1' THEN

 state <= AstopReset2;

 ELSE

 state <= BothMove1;

 END IF;

 -- Both Trains are moving (reset phase) sensor - sensor 2 hit

first

 WHEN BothMove2 =>

 IF sensor6 = '1' THEN

 state <= BstopReset;

 ELSIF sensor1 = '1' THEN

 state <= AstopReset;

 ELSE

 state <= BothMove2;

 END IF;

 -- Both Trains are moving at Very Beginning of reset phase

 WHEN BothMove =>

 IF sensor12 = "11" THEN

 state <= BothMove2;

 ELSIF sensor12 = "10" THEN

 state <= BothMove1;

 ELSIF sensor12 = "01" THEN

 state <= BothMove2;

 ELSIF sensor12 = "00" THEN

 state <= BothMove;

 END IF;

 END CASE;

 END IF;

 END PROCESS;

 -- Notice that all of the following logic is NOT in a process block,

 -- and thus does not depend on any clock. Everything here is pure

combinational

 -- logic, and exists in parallel with everything else.

 -- Combine bits for the internal signals declared above.

 -- ("&" operator concatenates bits)

 sensor12 <= sensor1 & sensor2;

 sensor24 <= sensor2 & sensor4;

 sensor15 <= sensor1 & sensor5;

 sensor46 <= sensor4 & sensor6;

 sensor51 <= sensor5 & sensor1;

 sensor64 <= sensor6 & sensor4;

 sensor62 <= sensor6 & sensor2;

 sensor61 <= sensor6 & sensor1;

 -- The following outputs depend on the state.

 WITH state SELECT switch1 <=

 '0' WHEN A1B5,

 '0' WHEN A4B6,

 '0' WHEN A5B1,

 '0' WHEN A6B4,

 '0' WHEN Astop,

 '0' WHEN Bstop,

 '1' WHEN AstopReset2,

 '0' WHEN BstopReset2,

 '1' WHEN AstopReset, --only train B is moving

 '0' WHEN BstopReset, --only train A is moving

 '0' WHEN BothMove1, -- Both Move (technically state can be combined

with other move statements)

 '1' WHEN BothMove2,

 '0' WHEN BothMove, --note doesn't matter what state trains have not

hit any switch or sensor

 '0' WHEN OTHERS;

 WITH state SELECT DirA <=

 "01" WHEN A1B5,

 "01" WHEN A4B6,

 "01" WHEN A5B1,

 "01" WHEN A6B4,

 "01" WHEN Bstop,

 "00" WHEN Astop,

 "00" WHEN AstopReset,

 "01" WHEN BstopReset,

 "00" WHEN AstopReset2,

 "01" WHEN BstopReset2,

 "01" WHEN BothMove1,

 "01" WHEN BothMove2,

 "01" WHEN BothMove,

 "00" WHEN Astop2,

 "01" WHEN Bstop2,

 "01" WHEN OTHERS; -- doesn't matter what state

 WITH state SELECT DirB <=

 "01" WHEN A1B5,

 "01" WHEN A4B6,

 "01" WHEN A5B1,

 "01" WHEN A6B4,

 "01" WHEN Astop,

 "00" WHEN Bstop,

 "00" WHEN BstopReset,

 "01" WHEN AstopReset,

 "00" WHEN BstopReset2,

 "01" WHEN AstopReset2,

 "01" WHEN BothMove1,

 "01" WHEN BothMove2,

 "01" WHEN BothMove,

 "01" WHEN Astop2,

 "00" WHEN Bstop2,

 "01" WHEN OTHERS; -- doesnt matter what state

 WITH state SELECT switch3 <=

 '1' WHEN A1B5,

 '1' WHEN A4B6,

 '1' WHEN A5B1,

 '1' WHEN A6B4,

 '1' WHEN Astop,

 '1' WHEN Bstop,

 '1' WHEN AstopReset,

 '1' WHEN BstopReset,

 '1' WHEN AstopReset2,

 '0' WHEN BstopReset2,

 '0' WHEN BothMove1,

 '1' WHEN BothMove2,

 '0' WHEN BothMove,

 '1' WHEN OTHERS; --doesnt matter what state

 WITH state SELECT switch4 <=

 '1' WHEN A1B5,

 '1' WHEN A4B6,

 '1' WHEN A5B1,

 '1' WHEN A6B4,

 '1' WHEN Astop,

 '1' WHEN Bstop,

 '1' WHEN AstopReset,

 '1' WHEN BstopReset,

 '1' WHEN AstopReset2,

 '0' WHEN BstopReset2,

 '0' WHEN BothMove1,

 '1' WHEN BothMove2,

 '0' WHEN BothMove,

 '1' WHEN OTHERS; -- doesnt matter what state

 -- These outputs happen to be constant values for this solution;

 -- they do not depend on the state.

 Switch2 <= '0';

END a;

